

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B) **MG Chemicals UK Limited**

Version No: A-1.01 Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

Issue Date: 24/04/2023 Revision Date: 06/07/2023 L.REACH.GB.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier

Product name 8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)			
SDS Code: 8329HTC-50ML, 8329HTC-400ML			
Proper shipping name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains aluminium nitride)			
Other means of identification 8329HTC-B24042023 UFI: 3PQ0-G0UY-300R-189F			

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Epoxy hardener for use with resins
Uses advised against	No specific uses advised against are identified.

1.3. Details of the manufacturer or supplier of the safety data sheet

Registered company name MG Chemicals UK Limited		MG Chemicals (Head office)	MG Chemicals (Head office)	
Address	Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	1210 Corporate Drive Ontario L7L 5R6 Canada	1210 Corporate Drive Ontario L7L 5R6 Canada	
Telephone	+(44) 1663 362888	+(1) 800-340-0772	+(1) 800-340-0772	
Fax	Not Available	+(1) 800-340-0773	+(1) 800-340-0773	
Website	Not Available	www.mgchemicals.com	www.mgchemicals.com	
Email	sales@mgchemicals.com	Info@mgchemicals.com	Info@mgchemicals.com	

1.4. Emergency telephone number

Association / Organisation	Verisk 3E (Access code: 335388)	
Emergency telephone numbers	+(44) 20 35147487	
Other emergency telephone numbers	+(0) 800 680 0425	

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 [1]	H318 - Serious Eye Damage/Eye Irritation Category 1, H315 - Skin Corrosion/Irritation Category 2, H317 - Sensitisation (Skin) Category 1, H410 - Hazardous to the Aquatic Environment Long-Term Hazard Category 1
Legend:	1. Classified by Chernwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567

2.2. Label elements

Haz

zard pictogram(s)			¥_2
-------------------	--	--	-----

Signal word Danger

Hazard statement(s)

H318	8 Causes serious eye damage.	
H315	Causes skin irritation.	
H317	May cause an allergic skin reaction.	
H410	Very toxic to aquatic life with long lasting effects.	

EUH210	Safety data sheet available on request.	
Precautionary statement(s) Pre	evention	
P280	Wear protective gloves, protective clothing, eye protection and face protection.	
P261	Avoid breathing dust/fumes.	
P273	Avoid release to the environment.	
P264	Wash all exposed external body areas thoroughly after handling.	
P272	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P310 Immediately call a POISON CENTER/doctor/physician/first aider.		
P302+P352	P302+P352 IF ON SKIN: Wash with plenty of water.	
P333+P313	213 If skin irritation or rash occurs: Get medical advice/attention.	
P362+P364	P362+P364 Take off contaminated clothing and wash it before reuse.	
P391	Collect spillage.	

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

2.3. Other hazards

Cumulative effects may result following exposure*.

May produce discomfort of the respiratory system*.

May possibly affect fertility*.

aluminium Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	SCL / M-Factor	Nanoform Particle Characteristics
1.24304-00-5 2.246-140-8 3.Not Available 4.Not Available	30-50	aluminium nitride	Flammable Solids Category 2, Substances and Mixtures which in Contact with Water Emit Flammable Gases Category 3, Skin Corrosion/Irritation Category 1B, Serious Eye Damage/Eye Irritation Category 1; H228, H261, H314, H318, EUH029 ^[1]	Not Available	Not Available
1.68082-29-1 2.500-191-5 3.Not Available 4.Not Available	25-45	tall oil/ triethylenetetramine polyamides	Acute Toxicity (Oral and Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 1, Sensitisation (Skin) Category 1, Sensitisation (Respiratory) Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 2; H302+H332, H315, H318, H317, H334, H411 ^[1]	Not Available	Not Available
1.7429-90-5 2.231-072-3 3.013-001-00-6 013-002-00-1 4.Not Available	25-45	aluminium	Pyrophoric Solids Category 1, Substances and Mixtures which in Contact with Water Emit Flammable Gases Category 2; H250, H261 ^[2]	Not Available	Not Available
1.112945-52-5 2.Not Available 3.Not Available 4.Not Available	1-5	silica amorphous. fumed. crystalline free	EUH066 ^[1]	Not Available	Not Available
Legend:	d: 1. Classified by Chernwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567; 3. Classification drawn from C&L * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties				

SECTION 4 First aid measures

4.1. Description of first aid measures

	 DO NOT attempt to remove particles attached to or embedded in eye. Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye. Seek urgent medical assistance, or transport to hospital.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719)
Ingestion	 For advice, contact a Poisons Information Centre or a doctor. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

- Manifestation of aluminium toxicity include hypercalcaemia, anaemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterixis, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy can occur.
- Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminium loads are excessive.
- Serum aluminium levels above 60 ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml.

Deferoxamine has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminium.

[Ellenhorn and Barceloux: Medical Toxicology]

for irritant gas exposures:

- + the presence of the agent when it is inhaled is evanescent (of short duration) and therefore, cannot be washed away or otherwise removed
- arterial blood gases are of primary importance to aid in determination of the extent of damage. Never discharge a patient significantly exposed to an irritant gas without obtaining an arterial blood sample.
- supportive measures include suctioning (intubation may be required), volume cycle ventilator support (positive and expiratory pressure (PEEP), steroids and antibiotics, after a culture is taken
- ▶ If the eyes are involved, an ophthalmologic consultation is recommended

Occupational Medicine: Third Edition; Zenz, Dickerson, Horvath 1994 Pub: Mosby

Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure.

- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- ▶ The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology]

For acute or short term repeated exposures to ammonia and its solutions:

- Mild to moderate inhalation exposures produce headache, cough, bronchospasm, nausea, vomiting, pharyngeal and retrosternal pain and conjunctivitis. Severe inhalation produces laryngospasm, signs of upper airway obstruction (stridor, hoarseness, difficulty in speaking) and, in excessively, high doses, pulmonary oedema.
- Warm humidified air may soothe bronchial irritation.
- Test all patients with conjunctival irritation for corneal abrasion (fluorescein stain, slit lamp exam)
- Dyspneic patients should receive a chest X-ray and arterial blood gases to detect pulmonary oedema.

For exposures to quaternary ammonium compounds;

- For ingestion of concentrated solutions (10% or higher): Swallow promptly a large quantity of milk, egg whites / gelatin solution. If not readily available, a slurry of activated charcoal may be useful. Avoid alcohol. Because of probable mucosal damage omit gastric lavage and emetic drugs.
- For dilute solutions (2% or less): If little or no emesis appears spontaneously, administer syrup of Ipecac or perform gastric lavage.
- If hypotension becomes severe, institute measures against circulatory shock.
- If respiration laboured, administer oxygen and support breathing mechanically. Oropharyngeal airway may be inserted in absence of gag reflex. Epiglottic or laryngeal edema may necessitate a tracheotomy.
- Persistent convulsions may be controlled by cautious intravenous injection of diazepam or short-acting barbiturate drugs. [Gosselin et al, Clinical Toxicology of Commercial Products]

SECTION 5 Firefighting measures

5.1. Extinguishing media

Metal dust fires need to be smothered with sand, inert dry powders. **DO NOT USE WATER**, CO2 or FOAM.

Page 4 of 25

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)

- Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
- Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
- Chemical reaction with CO2 may produce flammable and explosive methane.
- If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out.

DO NOT use halogenated fire extinguishing agents.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility	 Reacts with acids producing flammable / explosive hydrogen (H2) gas Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
3. Advice for firefighters	
Fire Fighting	 When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed of the silica particles. When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
	 DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal. DO NOT use water or foam as generation of explosive hydrogen may result. With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal fines' are present. Metal powders, while generally regarded as non-combustible: May burn when metal is finely divided and energy input is high. May be ignited by friction, heat, sparks or flame. May be ignited by friction, heat, sparks or flame. May REIGNITE after fire is extinguished. Will burn with intense heat. Note:

- Metal dust fires are slow moving but intense and difficult to extinguish.
- Containers may explode on heating.
- Dusts or fumes may form explosive mixtures with air.
- Gases generated in fire may be poisonous, corrosive or irritating.
- Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids.
- Temperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids
 Some metals can be adjusted a pitcage under a store atmosphere in which adjusts
- Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids would be incapable of burning.
- When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed on the silica particles.
- When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse.

Combustion products include:
carbon monoxide (CO)
carbon dioxide (CO2)

- nitrogen oxides (NOx)
- silicon dioxide (SiO2)
- metal oxides

other pyrolysis products typical of burning organic material.

When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles.

- Particle size, coating and dispersion in air determine reactivity of aluminium
- Bulk aluminium is not combustible but at high temperatures, molten aluminium can be ignited and burn.
- Molten aluminium may react violently if it comes into contact with water. Aluminium is rapidly oxidised by water at 180 C

Atomised aluminium dusts are potentially explosive. Electric sparks may ignite the dust cloud even in atmospheres containing low oxygen (7%).

▶ In air the dust may be ignited in contact with hot surfaces or flame where temperatures exceed 640 deg C.

SECTION 6 Accidental release measures

Fire/Explosion Hazard

6.1. Personal precautions, protective equipment and emergency procedures See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills	 Environmental hazard - contain spillage. Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety glasses. Use dry clean up procedures and avoid generating dust. Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). Do NOT use air hoses for cleaning Place spilled material in clean, dry, sealable, labelled container.
--------------	--

Page 5 of 25

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)

Major Spills	 Environmental hazard - contain spillage. Do not use compressed air to remove metal dusts from floors, beams or equipment Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation. Use non-sparking handling equipment, tools and natural bristle brushes. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations Cover and reseal partially empty containers. Do not allow chips, fines or dusts to contact water, particularly in enclosed areas. If molten: Contain the flow using dry sand or salt flux as a dam. All tooling (e.g., shovels or hand tools) and containers which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use. Allow the spill to cool before remeting scrap. Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

7.1. Precautions for safe handling

Safe handling	For moties metals: • Moten metals and vater can be an explosive combination. The risk is greatest when there is sufficient motien metal to entrap or seal of water. Water and other forms of contamination on or contained in scrap or remet ingot are known to have caused explosions in meting operations. While the products may have minimal surface roughness and internal volds, there remains the possibility of moisture contamination or entrapment. If confined, even a lew drops can lead to violent explosions. All tooling, containers, molds and lades, which come in contact with motien metal must be preheated or specially coated, rust free and approved for such use. • Any surfaces that may contact motien metal (e.g. concrete) should be specially coated • Drops of molten metal in water (e.g. from plasma arc cutting), while not normally an explosion hazard, can generate enough flammable hydrogen gas to present an explosion hazard. Vigorous circulation of the water and removal of the particles minimise the hazard. During meting operations, the following minimum guidelines should be observed: • Inspect all materials in for, heated areas with any cracks or cavilies pointed downwards. • Store materials in dry, heated areas with any cracks or cavilies pointed downwards. • Preheat and that temperature of or hours. • Preheat and that temperature of or hours. • Vavid all paresonal contact, including inhalation. • Prevet contantive mick of exposure occurs. • Use in a well-vertilited area. • Prevet contact when risk or exposure occurs. • Use in a well-vertilited area. • Prevet contact when risk or exposure occurs. • Use in a well-vertilited area. • Avoid ontact with incompatible materials. • Avoid ontact with incompatible materials. • Avoid contact with incompatible materials. • When handling, DON OT entact humans, explosed food rood utensils. • Avoid ontact with incompatible materials. • When handling, DON OT entact humans, explosed food rood utensils. • Avoid onpatienter should be fundered separately.
---------------	---

	 Do NOT cut, drill, grind or weld such containers. In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.
Fire and explosion protection	See section 5
Other information	Consider storage under inert gas. Store in original containers. Keep containers securely sealed. Store in a cool, dry area protected from environmental extremes. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. For major quantities: Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

7.2. Conditions for safe storage, including any incompatibilities

Suitable container	 Lined metal can, lined metal pail/ can. Plastic pail. Polyliner drum. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. Bulk bags: Reinforced bags required for dense materials. DO NOT use aluminium, galvanised or tin-plated containers
Storage incompatibility	 Nuricies are reducing agents. They generate flammable or nonlous gases in context with water. In general, initides are incompatible with oxidizers such as atmospheric oxygen. They are violently incompatible with acids, particularly oxiding acids. For aluminal (quinnium oxide): Incompatible with hot chionnated rubber. May initiate explosive polymerisation of defin coxides including ethylene oxide. Produces exotymeric reaction about earns or a violently and a quite. May initiate explosive polymerisation of defin coxides including ethylene oxide. Produces exotymeric reaction about 200° with halocachors and an exothermic reaction at ambient temperatures with halocachons in the presence of other metals. Produces exotymeric reaction about 200° with halocachors and an exothermic reaction and sodium hydroxide, acting as an acid with a base with a acid, neutraliang the other and producing a suit. Cauternay ammonium cators are unreachine toward environ exotymelite, soldants, and acids. They also are stable toward means that acid, neutraliang the other and producing a suit. Cauternay ammonium cators are unreachine toward environ glectrophiles, oxidants, and acids. They also are stable toward mean fauthermine and the acid section with an exploration of the producing a suit. Cauternay ammonium compounds are described by unicin detergents (including common susp.). With exorptionally strong bases, quit cations degrade. They undrogs Dommelei-Hauser rearrangement and Storwes rearrangement as with a eadilytation undreadin. Audietmany eminimation and Emde degradation. Audietmany eminimation and Emde degradation. Audietmany environs and Emde degradation. Audietmany exotypical data possessing pryrole and pryridine like properties and therefore its reactivity might resemble that of the otheras. In midazole charge.<!--</td-->

Page 7 of 25

	-
	8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)
	 within the explosive limits can occur above aqueous solutions of varying strengths. Avoid contact with sodium hydroxide, iron and cadmium. Several incidents involving sudden "boiling" (occasionally violent) of a concentrated solution (d, 0.880, 35 wt %,) have occurred when screw-capped winchesters are opened. These are attributable to supersaturation of the solution with gas caused by increases in temperature subsequent to preparation and bottling. The effect is particularly marked with winchesters filled in winter and opened in summer. Ammonia polymerises violently with ethylene oxide. Ammonia attacks some coatings, plastics and rubber. Attacks copper, bronze, brass, aluminium, steel and their alloys. Silicas: react with hydrofluoric acid to produce explosive xenon trioxide react with xenon hexafluoride to produce explosive xenon trioxide react with terf fluorine-containing compounds may react vith fluorine, chlorates are incompatible with strong oxidisers, manganese trioxide, chlorine trioxide, strong alkalis, metal oxides, concentrated orthophosphoric acid, vinyl acetate may react vigorously when heated with alkali carbonates. Segregate from alcohol, water, Atoid contamination with water, alkalis and detergent solutions. Material reacts with water and generates gas, pressurises containers with even drum rupture resulting. DO NOT reseal container if contamination is suspected. Open all containers with care.
	 can react exothermically with oxidising acids to form noxious gases. catalyse polymerisation and other reactions, particularly when finely divided react with halogenated hydrocarbons (for example, copper dissolves when heated in carbon tetrachloride), sometimes forming explosive compounds.
	 Finely divided metal powders develop pyrophoricity when a critical specific surface area is exceeded; this is ascribed to high heat of oxide formation on exposure to air. Safe handling is possible in relatively low concentrations of oxygen in an inert gas. Several pyrophoric metals, stored in glass bottles have ignited when the container is broken on impact. Storage of these materials moist and in metal containers is recommended. The reaction residues from various metal syntheses (involving vacuum evaporation and co-deposition with a ligand) are often pyrophoric. Factors influencing the pyrophoricity of metals are particle size, presence of moisture, nature of the surface of the particle, heat of formation of the oxide, or nitride, mass, hydrogen content, stress, purity and presence of oxide, among others. Many metals in elemental form react exothermically with compounds having active hydrogen atoms (such as acids and water) to form flammable hydrogen gas and caustic products. Elemental metals may react with azo/diazo compounds to form explosive products. Some elemental metals form explosive products with halogenated hydrocarbons.
Hazard categories accordance with Regulatio (EC) No 1272/20	on E1: Hazardous to the Aquatic Environment in Category Acute 1 or Chronic 1
Qualifying quantity (tonnes) dangerous substances	as E1 Lower-/ Unper-tier requirements: 100 / 200

7.3. Specific end use(s)

referred to in Article 3(10) for the application of

See section 1.2

SECTION 8 Exposure controls / personal protection

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment
aluminium nitride	Inhalation 0.47 mg/m ³ (Systemic, Chronic) Inhalation 0.034 mg/m ³ (Local, Chronic)	1.98 μg/L (Water (Fresh)) 0.2 μg/L (Water - Intermittent release) 1.98 μg/L (Water (Marine)) 1 mg/L (STP)
tall oil/ triethylenetetramine polyamides	Dermal 1.1 mg/kg bw/day (Systemic, Chronic) Inhalation 3.9 mg/m ³ (Systemic, Chronic) Dermal 0.56 mg/kg bw/day (Systemic, Chronic) * Inhalation 0.97 mg/m ³ (Systemic, Chronic) * Oral 0.56 mg/kg bw/day (Systemic, Chronic) *	0.004 mg/L (Water (Fresh)) 0 mg/L (Water - Intermittent release) 0.043 mg/L (Water (Marine)) 434.02 mg/kg sediment dw (Sediment (Fresh Water)) 43.4 mg/kg sediment dw (Sediment (Marine)) 86.78 mg/kg soil dw (Soil) 3.84 mg/L (STP)
aluminium	Inhalation 3.72 mg/m³ (Systemic, Chronic) Inhalation 3.72 mg/m³ (Local, Chronic) Oral 3.95 mg/kg bw/day (Systemic, Chronic) *	74.9 μg/L (Water (Fresh)) 20 mg/L (STP)

* Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
UK Workplace Exposure Limits (WELs).	aluminium	Aluminium metal: inhalable dust	10 mg/m3	Not Available	Not Available	Not Available

Page 8 of 25

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
UK Workplace Exposure Limits (WELs).	aluminium	Aluminium metal: respirable dust	4 mg/m3	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs).	silica amorphous, fumed, crystalline free	Silica, amorphous: inhalable dust	6 mg/m3	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs).	silica amorphous, fumed, crystalline free	Silica, amorphous: respirable dust	2.4 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3		
silica amorphous, fumed, crystalline free	18 mg/m3	100 mg/m3	m3 630 mg/m3			
Ingredient	Original IDLH		Revised IDLH			
aluminium nitride	Not Available	Not Available		Not Available		
tall oil/ triethylenetetramine polyamides	Not Available		Not Available			
aluminium	Not Available		Not Available			
silica amorphous, fumed, crystalline free	Not Available		Not Available			

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
aluminium nitride	С	> 0.1 to ≤ milligrams per cubic meter of air (mg/m³)	
tall oil/ triethylenetetramine polyamides	E	≤ 0.1 ppm	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the		

adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

MATERIAL DATA

For aluminium oxide and pyrophoric grades of aluminium:

Twenty seven year experience with aluminium oxide dust (particle size 96% 1,2 um) without adverse effects either systemically or on the lung, and at a calculated concentration equivalent to 2 mg/m3 over an 8-hour shift has lead to the current recommendation of the TLV-TWA.

The limit should also apply to aluminium pyro powders whose toxicity is reportedly greater than aluminium dusts and should be protective against lung changes.

For aluminium oxide:

The experimental and clinical data indicate that aluminium oxide acts as an "inert" material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control.

[Documentation of the Threshold Limit Values], ACGIH, Sixth Edition

Amine adducts have much reduced volatility and are less irritating to the skin and eyes than amine hardeners. However commercial amine adducts may contain a percentage of unreacted amine and all unnecessary contact should be avoided.

Amine adducts are prepared by reacting excess primary amines with epoxy resin.

Polyamide hardeners have much reduced volatility, toxicity and are much less irritating to the skin and eyes than amine hardeners. However commercial polyamides may contain a percentage of residual unreacted amine and all unnecessary contact should be avoided.

For amorphous crystalline silica (precipitated silicic acid):

Amorphous crystalline silica shows little potential for producing adverse effects on the lung and exposure standards should reflect a particulate of low intrinsic toxicity. Mixtures of amorphous silicas/ diatomaceous earth and crystalline silica should be monitored as if they comprise only the crystalline forms.

The dusts from precipitated silica and silica gel produce little adverse effect on pulmonary functions and are not known to produce significant disease or toxic effect.

IARC has classified silica, amorphous as Group 3: NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

8.2. Exposure controls

8.2.1. Appropriate engineering controls	 bonding where necessary to prevent accumulation of static charge Do not allow chips, fines or dusts to contact water, particularly in e Metal spraying and blasting should, where possible, be conducted form of metal oxides, to potentially reactive finely divided metals st Work-shops designed for metal spraying should possess smooth vaccumulation is possible. Wet scrubbers are preferable to dry dust collectors. Bag or filter-type collectors should be sited outside the workrooms Cyclones should be protected against entry of moisture as reactive wetted states. Local exhaust systems must be designed to provide a minimum cational states. 	sk of ignition, flame propagation and secondary explosions. beams or equipment se dust accumulation. Ishes. Cover and reseal partially empty containers. Provide grounding and s during metal dust handling and transfer operations. Inclosed areas. In separate rooms. This minimises the risk of supplying oxygen, in the ich as aluminium, zinc, magnesium or titanium. valls and a minimum of obstructions, such as ledges, on which dust and be fitted with explosion relief doors. e metal dusts are capable of spontaneous combustion in humid or partially pture velocity at the fume source, away from the worker, of 0.5 metre/sec. explosive dusts. Dry vacuum and electrostatic precipitators must not be <i>ve</i> dusts.
--	--	---

	8329HTC Thermally Conductive Structura	I Epoxy Adhesive (Part B	3)
	-		
	welding, brazing fumes (released at relatively low velocity	into moderately still air) 0.5-1.0	m/s (100-200 f/min.)
	Within each range the appropriate value depends on:		
	Lower end of the range	Upper end of the range	
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity	
	3: Intermittent, low production.	3: High production, heavy use	
		4: Small hood-local control only	
	4: Large hood or large air mass in motion	4. Small hood-local control only	
	Simple theory shows that air velocity falls rapidly with distar with the square of distance from the extraction point (in sim accordingly, after reference to distance from the contaminal 1-2.5 m/s (200-500 f/min.) for extraction of gases discharge producing performance deficits within the extraction appara more when extraction systems are installed or used.	ple cases). Therefore the air spee ting source. The air velocity at the ed 2 meters distant from the extract	d at the extraction point should be adjusted, extraction fan, for example, should be a minimum of tion point. Other mechanical considerations,
8.2.2. Individual protection measures, such as personal protective equipment			
Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] 		
Skin protection	See Hand protection below		
Hands/feet protection	 NOTE: The material may produce skin sensitisation in predisprequipment, to avoid all possible skin contact. Contaminated leather items, such as shoes, belts and of The selection of suitable gloves does not only depend on the manufacturer. Where the chemical is a preparation of severa and has therefore to be checked prior to the application. The exact break through time for substances has to be obtat making a final choice. Personal hygiene is a key element of effective hand care. Giveshead and dried thoroughly. Application of a non-perfume Suitability and durability of glove type is dependent on usage frequency and duration of contact, chemical resistance of glove material, glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN. When prolonged or frequently repeated contact may occuminutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recomme Some glove polymer types are less affected by movement Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are Excellent when breakthrough time > 20 min Fair when breakthrough time > 20 min Fair when glove material degrades For general applications, gloves with a thickness typically gl tshould be emphasised that glove thickness is not necessis efficiency of the glove will be dependent on the exact comp consideration of the task requirements and knowledge of br Glove thickness may also vary depending on the glove materiad gloves sore of a more placet. A role ways be taken into account to ensure selection to the system on clean hands. After using glove moisturiser is recommended. Protective gloves eg. Leather gloves or gloves with Leat should always be taken into account not equived the puncture potential Gloves is that the following polymers are suitable particles are not present. polychloroprene. hitrile rubber	watch-bands should be removed a te material, but also on further main ral substances, the resistance of the alined from the manufacturer of the Bloves must only be worn on clean d moisturiser is recommended. Je. Important factors in the selection and the protection class on al equivalent) is recommended. tion class of 3 or higher (breakthrough nded. t and this should be taken into accom- arily a good predictor of glove resi- osition of the glove material. There- reakthrough times. hufacturer, the glove type and the sort of the most appropriate glove for varying thickness may be require- where a high degree of manual de- te is a mechanical (as well and the should be washed and of ather facing	and destroyed. rks of quality which vary from manufacturer to he glove material can not be calculated in advance a protective gloves and has to be observed when a hands. After using gloves, hands should be on of gloves include: or national equivalent). If 5 or higher (breakthrough time greater than 240 ough time greater than 60 minutes according to EN count when considering gloves for long-term use. ended. stance to a specific chemical, as the permeation efore, glove selection should also be based on glove model. Therefore, the manufacturers technical or the task. d for specific tasks. For example: exterity is needed. However, these gloves are only then disposed of. as a chemical) risk i.e. where there is abrasion or dried thoroughly. Application of a non-perfumed

Continued...

Page 10 of 25

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)

	Gloves should be examined for wear and/ or degradation constantly.
Body protection	See Other protection below
Other protection	 Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Respiratory protection

Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	P1 Air-line*	-	PAPR-P1 -
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

· Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

• The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).

Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.

Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
 Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)

· Use approved positive flow mask if significant quantities of dust becomes airborne.

· Try to avoid creating dust conditions.

Class P2 particulate filters are used for protection against mechanically and thermally generated particulates or both.

P2 is a respiratory filter rating under various international standards, Filters at least 94% of airborne particles

Suitable for:

· Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.

· Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke.

- Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance	Moisture sensitive. In chemistry, a nitride is a compound of nitrogen where wide range of properties and applications. The nitride ion, N3-, is never encountered in protic soli- estimated to be 140 pm Nitrides can be classified into three general categories nitrides. Alkaline earth nitrides are formed with the formula M31 produce ammonia and the metal hydroxide. Transition metal nitrides form compounds with the form For the group 3 metals, ScN and YN are both known. nitrides They are refractory, with high melting point and called "interstitial nitrides". They constitute the largest conductivities. The nitrides of p-block elements are called as covalen Nitrides of the group 7 and 8 transition metals decomp and osmium nitride may contain N2 units, and as such Nitrides of heavier members from group 11 and 12 are explosive which may detonate from the slightest touch Grey Grey	ution because it is so basic that it wou : ionic, interstitial, and covalent. Alkal N2 (for example, Ca3N2, Ba3N2, Mg2 nula MN, M2N, and M4N. Group 4, 5, and 6 transition metals (th d are chemically stable. Representati group of nitrides and are extremely have t nitrides. These have wide range of p lose readily. For example, iron nitride, should not be called nitrides.	ald be protonated immediately. Its ionic radius is ii and alkaline earth nitrides are called as ionic 3N2). These compounds undergo hydrolysis to ne titanium, vanadium and chromium groups) all form ve is titanium nitride. Sometimes these materials are ard, and usually have metallic luster and high properties depending on nitrogen bonding. Fe2N decomposes at 200 deg C. Platinum nitride
Physical state	Solid	Relative density (Water = 1)	1.60
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	400
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available

Page 11 of 25

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)

Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	180	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Partly miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 Toxicological information

11.1. Information on toxicological effects

	The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems. Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death.
	Not normally a hazard due to non-volatile nature of product
Inhaled	Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.
	The highly irritant properties of ammonia vapour result as the gas dissolves in mucous fluids and forms irritant, even corrosive solutions. Inhalation of the ammonia fumes causes coughing, vomiting, reddening of lips, mouth, nose, throat and conjunctiva while higher concentrations can cause temporary blindness, restlessness, tightness in the chest, pulmonary oedema (lung damage), weak pulse and cyanosis. Inhalation of high concentrations of vapour may cause breathing difficulty, tightness in chest, pulmonary oedema and lung damage. Brief exposure to high concentrations > 5000 ppm may cause death due to asphyviation (suffocation) or fluid in the lungs.
	Prolonged or regular minor exposure to the vapour may cause persistent irritation of the eyes, nose and upper respiratory tract. Massive ammonia exposures may produce chronic airway hyperactivity and asthma with associated pulmonary function changes. The average nasal retention of ammonia by human subjects was found to be 83%.
	Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

Page 12 of 25

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)

The very bitter taste is likely to give early warning of accidental ingestion. Concentrated solutions of many cationics may cause corrosive damage to mucous membranes and the oesophagus. Nausea and vomiting (sometimes bloody) may follow ingestion. Serious exposures may produce an immediate burning sensation of the mouth, throat and abdomen with profuse salivation, ulceration of mucous membranes, signs of circulatory shock (hypotension, laboured breathing, and cyanosis) and a feeling of apprehension, restlessness, confusion and weakness. Weak convulsive movements may precede central nervous system depression. Erosion, ulceration and petechial haemorrhage may occur through the small intestine with glottic, brain and pulmonary oedema. Death may result from asphyxiation due to paralysis of the muscles of respiration or cardiovascular collapse. Fatal poisoning may arise even when the only pathological signs are visceral congestion, swallounonary oedema or varying signs of gastrointestinal irritation. Individuals who survive a period of severe hypertension may develop kidney failure. Cloudy swelling, patchy necrosis and fatty infiltration in such visceral organs as the heart, liver and kidneys shows at death. Rats fed repeatedly on a similar material (a C12-C16 alx) derivative), over several weeks, died of inanition associated with chronic diarrhoea; at autopsy the only lesion found was focal haemorrhagic necrosis of the gastric mucosa. Repeated administration of 0.5% in the diet was lethal to rats, while 25 mg/kg was lethal to dogs; toxic signs in dogs included conditioned salivation, vomiting or diarrhoea. The vomitus may contain blood and mucous. If death does not occur within 24 hours there may be an improvement in the patients condition for 2-4 days only to be followed by the sudden onset of abdominal pain, board-like abdominal rigidity or hypo-tension; this indicates that delayed gastric or oesophageal corrosive damage has occurred. Acute toxic responses to alumininum are confined to the more soluble forms. The
Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present wenty-four hours or more after the end of the exposure priod. Skin irritation may also be present after prolonged or repeated exposure; this often characterised by skin redness (expthema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition. Skin contact is not though to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. 1% solutions of many catinic surfactants produce dermal irritation and 10% solutions may be corrosive producing chemical burns. Contact with aluminas (aluminium oxides) may produce a form of irritant dermatitis accompanied by pruritus. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable Iching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur. Virtually all of the liquid amine curing agents can cause sensitisation or ne-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities and rusting and scaling may also occurs. NOTE: Susceptibility to this sensitisation will vary from person
When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated. Vapours of volatile amines cause eye irritation with lachrymation, conjunctivitis and minor transient corneal oedema which results in "halos" around lights (glaucopsia, "blue haze", or "blue-grey haze"). Vision may become misty and halos may appear several hours after workers are exposed to the substance This effect generally disappears spontaneously within a few hours of the end of exposure, and does not produce physiological after-effects. However oedema of the corneal epithelium, which is primarily responsible for vision disturbances, may take more than one or more days to clear, depending on the severity of exposure. Photophobia and discomfort from the roughness of the corneal surface also may occur after greater exposures. Although no detriment to the eye occurs as such, glaucopsia predisposes an affected individual to physical accidents and reduces the ability to undertake skilled tasks such as driving a vehicle. Direct local contact with the liquid may produce eye damage which may be permanent in the case of the lower molecular weight species.
Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Page 13 of 25

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed.

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests.

Imidazole is structurally related to histamine and has been used as an antagonist to counteract the effects of excess histamine found in certain induced physiological conditions (it therefore acts as an antihistamine).

Imidazoles have been reported to disrupt male fertility through disruption of testicular function.

Certain imidazole fungicides provoke histamine release by a non-immunological mechanism, induce airway constriction in guinea-pigs and hence may be harmful to spray operators who might inhale fungicide aerosols used for plant protection.

Imidazole fungicides inhibit the cytochrome P450 (CYP) complex, including the 14alpha-demethylase (CYP51) enzyme required for ergosterol biosynthesis, in fungal cell membranes. In addition, intracellular accumulation of toxic methylated sterols occurs and the synthesis of triglycerides and phospholipids is altered. Disturbances in oxidative and peroxidative enzyme activities lead to an intracellular toxic concentration of hydrogen peroxide. As a result, intracellular organelle destruction then leads to cell necrosis.

2-Methylimidazole decreased luteinising hormone secretion and tissue interstitial fluid testosterone concentration two hours after injection into Spraque Dawley rats.

Imidazoles bind to cytochrome P450 haeme, resulting in inhibition of catalysis. However, 2-substituted imidazoles are considered to be poor inhibitors. Imidazole is probably an inducer of cytochrome P4502E1. In general, inducers of this isozyme stabilise the enzyme by preventing phosporylation of a serine which leads to haeme loss.

Several drugs containing an imidazole moiety were retained and bound in connective tissue when administered to laboratory animals. The bound material was primarily recovered from elastin (70%) and the collagen. It is postulated that reaction with aldehydes gives an aldol condensation pro

Chronic exposure to aluminas (aluminium oxides) of particle size 1.2 microns did not produce significant systemic or respiratory system effects in workers. Epidemiologic surveys have indicated an excess of nonmalignant respiratory disease in workers exposed to aluminum oxide during abrasives production.

Very fine AI2O3 powder was not fibrogenic in rats, guinea pigs, or hamsters when inhaled for 6 to 12 months and sacrificed at periods up to 12 months following the last exposure.

When hydrated aluminas were injected intratracheally, they produced dense and numerous nodules of advanced fibrosis in rats, a reticulin network with occasional collagen fibres in mice and guinea pigs, and only a slight reticulin network in rabbits. Shaver's disease, a rapidly progressive and often fatal interstitial fibrosis of the lungs, is associated with a process involving the fusion of bauxite (aluminium oxide) with iron, coke and silica at 2000 deg. C.

The weight of evidence suggests that catalytically active alumina and the large surface area aluminas can induce lung fibrosis(aluminosis) in experimental animals, but only when given by the intra-tracheal route. The pertinence of such experiments in relation to workplace exposure is doubtful especially since it has been demonstrated that the most reactive of the aluminas (i.e. the chi and gamma forms), when given by inhalation, are non-fibrogenic in experimental animals. However rats exposed by inhalation to refractory aluminium fibre showed mild fibrosis and possibly carcinogenic effects indicating that fibrous aluminas might exhibit different toxicology to non-fibrous forms. Aluminium oxide fibres administered by the intrapleural route produce clear evidence of carcinogenicity.

Saffil fibre an artificially produced form alumina fibre used as refractories, consists of over 95% alumina, 3-4% silica. Animal tests for fibrogenic, carcinogenic potential and oral toxicity have included in-vitro, intraperitoneal injection, intrapleural injection, inhalation, and feeding. The fibre has generally been inactive in animal studies. Also studies of Saffil dust clouds show very low respirable fraction.

There is general agreement that particle size determines that the degree of pathogenicity (the ability of a micro-organism to produce infectious disease) of elementary aluminium, or its oxides or hydroxides when they occur as dusts, fumes or vapours. Only those particles small enough to enter the alveolii (sub 5 um) are able to produce pathogenic effects in the lungs.

Occupational exposure to aluminium compounds may produce asthma, chronic obstructive lung disease and pulmonary fibrosis. Long-term overexposure may produce dyspnoea, cough, pneumothorax, variable sputum production and nodular interstitial fibrosis; death has been reported. Chronic interstitial pneumonia with severe cavitations in the right upper lung and small cavities in the remaining lung tissue, have been observed in gross pathology. Shaver's Disease may result from occupational exposure to fumes or dusts; this may produce respiratory distress and fibrosis with large blebs. Animal studies produce no indication that aluminium or its compounds are carcinogenic.

Because aluminium competes with calcium for absorption, increased amounts of dietary aluminium may contribute to the reduced skeletal mineralisation (osteopenia) observed in preterm infants and infants with growth retardation. In very high doses, aluminium can cause neurotoxicity, and is associated with altered function of the blood-brain barrier. A small percentage of people are allergic to aluminium and experience contact dermatitis, digestive disorders, vomiting or other symptoms upon contact or ingestion of products containing aluminium, such as deodorants or antacids. In those without allergies, aluminium is not as toxic as heavy metals, but there is evidence of some toxicity if it is

consumed in excessive amounts. Although the use of aluminium cookware has not been shown to lead to aluminium toxicity in general, excessive consumption of antacids containing aluminium compounds and excessive use of aluminium-containing antiperspirants provide more significant exposure levels. Studies have shown that consumption of acidic foods or liquids with aluminium significantly increases aluminium absorption, and maltol has been shown to increase the accumulation of aluminium in nervous and osseus tissue. Furthermore, aluminium increases oestrogen-related gene expression in human breast cancer cells cultured in the laboratory These salts' estrogen-like effects have led to their classification as a metalloestrogen. Some researchers have expressed concerns that the aluminium in antiperspirants may increase the risk of breast cancer.

After absorption, aluminium distributes to all tissues in animals and humans and accumulates in some, in particular bone. The main carrier of the aluminium ion in plasma is the iron binding protein, transferrin. Aluminium can enter the brain and reach the placenta and foetus. Aluminium may persist for a very long time in various organs and tissues before it is excreted in the urine. Although retention times for aluminium appear to be longer in humans than in rodents, there is little information allowing extrapolation from rodents to the humans.

At high levels of exposure, some aluminium compounds may produce DNA damage in vitro and in vivo via indirect mechanisms. The database on carcinogenicity of aluminium compounds is limited. No indication of any carcinogenic potential was obtained in mice given aluminium potassium sulphate at high levels in the diet.

Aluminium has shown neurotoxicity in patients undergoing dialysis and thereby chronically exposed parenterally to high concentrations of aluminium. It has been suggested that aluminium is implicated in the aetiology of Alzheimer s disease and associated with other neurodegenerative diseases in humans. However, these hypotheses remain controversial. Several compounds containing aluminium have the potential to produce neurotoxicity (mice, rats) and to affect the male reproductive system (dogs). In addition, after maternal exposure they have shown embryotoxicity (mice) and have affected the developing nervous system in the offspring (mice, rats). The available studies have a number of limitations and do not allow any dose-response relationships to be established. The combined evidence from several studies in mice, rats and dogs that used dietary administration of aluminium compounds produce lowest-observed-adverse-effect levels (LOAELs) for effects on neurotoxicity, testes, embryotoxicity, and the developing nervous system of 52, 75, 100, and 50 mg aluminium/kg bw/day, respectively. Similarly, the lowest no-observed-adverse-effect levels (NOAELs) for effects on these endpoints were reported at 30, 27, 100, and for effects on the developing nervous system, between 10 and 42 mg aluminium/kg bw per day, respectively.

Controversy exists over whether aluminium is the cause of degenerative brain disease (Alzheimer's disease or AD). Several epidemiological studies show a possible correlation between the incidence of AD and high levels of aluminium in drinking water. A study in Toronto, for example, found a 2.6 times increased risk in people residing for at least 10 years in communities where drinking water contained more than 0.15 mg/l aluminium compared with communities where the aluminium level was lower than 0.1 mg/l. A neurochemical model has been suggested linking aluminium exposure to brain disease. Aluminium concentrates in brain regions, notably the hippocampus, cerebral cortex and amygdala where it preferentially binds to large pyramid-shaped cells - it does not bind to a substantial degree to the smaller interneurons. Aluminium displaces magnesium in key metabolic reactions in brain cells and also interferes with calcium metabolism and inhibits phosphoinositide metabolism. Phosphoinositide normally controls calcium ion levels at critical concentrations.

Under the microscope the brain of AD sufferers show thickened fibrils (neurofibrillary tangles - NFT) and plaques consisting of amyloid protein deposited in the matrix between brain cells. Tangles result from alteration of "tau" a brain cytoskeletal protein. AD tau is distinguished from normal tau because it is hyperphosphorylated. Aluminium hyperphosphorylates tau in vitro. When AD tau is injected into rat brain NFT-like aggregates form but soon degrade. Aluminium stabilises these aggregates rendering them resistant to protease degradation. Plaque formation is also enhanced by aluminium which induces the accumulation of amyloid precursor protein in the thread-like extensions of nerve cells (axons and dendrites). In addition aluminium has been shown to depress the activity of most neuro-transmitters similarly depressed in AD (acetylcholine, norepinephrine, glutamate and GABA). Aluminium enters the brain in measurable quantities, even when trace levels are contained in a glass of tap water. Other sources of bioavailable aluminium include baking powder, antacids and aluminium products used for general food preparation and storage (over 12 months, aluminium levels in soft drink packed in aluminium cans rose from 0.05 to 0.9 mg/l). [<i>Walton, J and Bryson-Taylor, D Chemistry in Australia, August 1995</i>] The synthetic, amorphous silicas are believed to represent a very greatly reduced silicosis hazard compared to crystalline silicas and are considered to be nuisance dusts.
When heated to high temperature and a long time, amorphous silica can produce crystalline silica on cooling. Inhalation of dusts containing crystalline silicas may lead to silicosis, a disabling pulmonary fibrosis that may take years to develop. Discrepancies between various studies showing that fibrosis associated with chronic exposure to amorphous silica and those that do not may be explained by assuming that diatomaceous earth (a non-synthetic silica commonly used in industry) is either weakly fibrogenic or nonfibrogenic and that fibrosis is due to contamination by crystalline silica content
Repeated exposure to synthetic amorphous silicas may produce skin dryness and cracking.
Available data confirm the absence of significant toxicity by oral and dermal routes of exposure.
Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. Differences in values may be due to particle size, and therefore the number of particles administered per unit dose. Generally, as particle size diminishes so does the NOAEL/ LOAEL. Exposure produced transient increases in lung inflammation, markers of cell injury and lung collagen content. There was no evidence of interstitial pulmonary fibrosis.
Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following. Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur.
Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions.
Individuals exhibiting "amine dermatitis" may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis.
NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or
weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause

erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided.

Sensitisation may give severe responses to very low levels of exposure, in situations where exposure may occur.

8329HTC Super Thermally	TOXICITY	IRRITATION
onductive Adhesive (Part B)	Not Available	Not Available
	ΤΟΧΙΟΙΤΥ	IRRITATION
aluminium nitride	Oral (Rat) LD50: 3450 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
		Skin: no adverse effect observed (not irritating) ^[1]
	ΤΟΧΙCΙΤΥ	IRRITATION
tall oil/ triethylenetetramine polyamides	dermal (rat) LD50: >2000 mg/kg ^[1]	Not Available
poryannues	Oral (Rat) LD50: >2000 mg/kg ^[1]	
	ΤΟΧΙCITY	IRRITATION
aluminium	Inhalation(Rat) LC50: >2.3 mg/l4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50: >2000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]
	ΤΟΧΙCITY	IRRITATION
silica amorphous, fumed, crystalline free	Dermal (rabbit) LD50: >5000 mg/kg ^[2]	Not Available
	Oral (Rat) LD50: 3160 mg/kg ^[2]	
Legend:	1 Value obtained from Europe ECHA Registered Substa	nces - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise

TALL OIL/ TRIETHYLENETETRAMINE POLYAMIDES	Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens). Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.
	Fatty acid amides (FAA) are ubiquitous in household and commercial environments. The most common of these are based on coconut oil fatty acids alkanolamides. These are the most widely studied in terms of human exposure.
	Fatty acid diethanolamides (C8-C18) are classified by Comite Europeen des Agents de Surface et de leurs Intermediaires Organiques (CESIO) as Irritating (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes). Fatty acid monoethanolamides are

Page 14 of 25 8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)

	8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)
	classified as Irritant (Xi) with the risk phrases R41
	Several studies of the sensitization potential of cocoamide diethanolamide (DEA) indicate that this FAA induces occupational allergic contact dermatitis and a number of reports on skin allergy patch testing of cocoamide DEA have been published. These tests indicate that allergy to cocoamide DEA is becoming more common.
	Alkanolamides are manufactured by condensation of diethanolamine and the methylester of long chain fatty acids. Several alkanolamides (especially secondary alkanolamides) are susceptible to nitrosamine formation which constitutes a potential health problem. Nitrosamine contamination is possible either from pre-existing contamination of the diethanolamine used to manufacture cocoamide DEA, or from nitrosamine formation by nitrosating agents in formulations containing cocoamide DEA. According to the Cosmetic Directive (2000) cocoamide DEA must not be used in products with nitrosating agents because of the risk of formation of N-nitrosamines. The maximum content allowed in cosmetics is 5% fatty acid dialkanolamides, and the maximum content of N-nitrosodialkanolamines is 50 mg/kg. The preservative 2-bromo-2-nitropropane-1,3-diol may lead to the N-nitrosation of diethanolamine forming the carcinogenic compound, N-nitrosodiethanolamine which is a potent liver carcinogen in rats (IARC 1978).
	Several FAAs have been tested in short-term genotoxicity assays. No indication of any potential to cause genetic damage was seen Lauramide DEA was tested in mutagenicity assays and did not show mutagenic activity in <i>Salmonella typhimurium</i> strains or in hamster embryo cells. Cocoamide DEA was not mutagenic in strains of <i>Salmonella typhimurium</i> when tested with or without metabolic activation
	Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Miljoministeriet (Danish Environmental Protection Agency)
	The following information refers to contact allergens as a group and may not be specific to this product.
	Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. For imidazoline surfactants (amidoamine/ imidazoline - AAIs)
	All substances within the AAI group show the same reactive groups, show similar composition of amide, imidazoline, and some dimer structures of both, with the length of original EA amines used for production as biggest difference. Inherent reactivity and toxicity is not expected to differ much between these substances.
	All in vivo skin irritation/corrosion studies performed on AAI substances all indicate them to be corrosive following 4 hour exposure. There do not seem to be big differences in response with the variation on EA length used for the production of the AAI. The available data available for AAI substances indicate that for AAI based on shorter polyethyleneamines (EA), higher toxicity is observed compared to AAI based on longer EA. The forming of imidazoline itself does not seem to play a significant role. For cross-reading in general Fatty acid reaction product with diethylenetriamine (AAI-DETA) therefore represents the worst case. In series of 28-day and combined repeated dose/reproduction screening toxicity studies (OECD 422) AAI-DETA has shown the highest level of toxicity
	Acute oral exposure of tall oil + triethylenepentamine (TEPA) show limited acute toxicity, with a LD50 above 2000 mg/kg bw. Hence no
	classification is required. Acute dermal testing with corrosive materials is not justified. As a consequence no classification can be made for acute dermal toxicity. Effects will be characterised by local tissue damage. Systemic uptake via skin is likely to be very limited. The low acute oral toxicity indicate a low
	systemic toxicity. For dermal exposure no good overall NOAEL can be established as effects are rather characterized by local corrosive effects that are related to duration, quantity and concentration, than by systemic toxicity due to dermal uptake. The mode of action for AAI follows from its structure, consisting of an apolar fatty acid chain and a polar end of a primary amine from the polyethyleneamine. The structure can disrupt the
	cytoplasmatic membrane, leading to lyses of the cell content and consequently the death of the cell. The AAI are protonated under environmental conditions which causes them to strongly adsorb to organic matter. This leads to a low dermal
	absorption.
8329HTC Super Thermally	No classification for acute dermal toxicity is therefore indicated. Also for acute inhalation toxicity information for classification is lacking, and is testing not justified. Due to very low vapour pressure is the likelihood of exposure low.
Conductive Adhesive (Part B) & TALL OIL/	AAI do not contain containing aliphatic, alicyclic and aromatic hydrocarbons and have a relatively high viscosity and so do not indicate an immediate concern for aspiration hazard.
TRIETHYLENETETRAMINE POLYAMIDES	Various studies with different AAI indicate that these substances can cause dermal sensitisation.
	All substances within the AAI group show the same reactive groups, show similar composition of amide, imidazoline, and some dimer structures of both, with the length of original EA amines used for production as biggest difference. Inherent reactivity and toxicity is not expected to differ
	much between these substances, aspects which determine sensitization. The actual risk of sensitisation is probably low, as AAI are corrosive to skin and consequently exposure will be low due to necessary protective
	measures to limit dermal exposure. The likelihood for exposure via inhalation and thus experience respiratory irritation or becoming sensitised to AAI, is very low considering the high
	boiling point (> 300 deg C) and very low vapour pressure (0.00017 mPa at 25 deg C for diethylenetriamine (DETA) based AAI). In case of high exposure by inhalation, local effects will be more prominent then possible systemic effects considering the low systemic toxicity seen in acute oral
	toxicity testing However, some calculations can be made for systemic effects following short-term inhalation exposure by extrapolating information from an OECD 422 study on "tall oil reaction products with tetraethylenepentamine showing a NOAEL of 300 mg/kg/day. This would certainly be
	protective for levels of acute inhalation expected to lead to similar systemic exposure levels. The corrected 8 hr inhalation NOAEC for workers is NOAEL (300 mg/kg) * 1.76 mg/m3 = 529 mg/m3 (assuming no difference in absorption
	following oral and inhalation exposure). Assessment factors further applied: No interspecies factor is needed due to allometric scaling applied in calculation of corrected NOAEC. Further combined inter-/intra-species for workers AF = 3 (ECETOC concept). As this involves acute exposures, no extrapolation for duration is needed.
	This results in a DNEL of 529/3 = 176 mg/m3 .A short term/acute exposure at this level can be assumed not to lead to systemic toxicity. Repeat dose toxicity:
	A combined repeated dose/reproduction screening toxicity study according to OECD 422 with Fatty acid reaction products with tetraethylene- pentamine resulted to a NOAEL of 300 mg/kg bw/day, the highest dose tested. Also available data from the group of Amidoamine/Imidazoline (AAI) substances, including 90-day studies in rat and dogs on a similar substance, indicate very low toxicity.
	Consequently, serious toxicity is not observed at levels requiring consideration classification for STOTS-RE Genotoxicity:
	Tall oil, reaction products with tetraethylenepentamine is not mutagenic in the Salmonella typhimurium reverse mutation assay (based on test

Tall oil, reaction products with tetraethylenepentamine is not mutagenic in the Salmonella typhimurium reverse mutation assay (based on test with Fatty acids C16-18, C18 unsaturated reaction products with tetraethylenepentamine), is not clastogenic in human lymphocytes, and not mutagenic in the TK mutation test with L5178Y mouse lymphoma cells.

It can therefore be concluded that tall oil, reaction products with tetraethylenepentamine not genotoxic.

Toxicity to reproduction:

The database of relevant studies available for the group of amidoamine/ imidazolines (AAI) include various OECD 422 studies and an OECD 414 study, that all show no concerns regarding reproduction or developmental toxicity. Also all already available data from the group of AAI

substances, including a 90-day study in dogs on a similar substance, indicate low toxicity and no adverse effects on reproductive organs. REACh Dossier

Handling ethyleneamine products is complicated by their tendency to react with other chemicals, such as carbon dioxide in the air, which results in the formation of solid carbamates. Because of their ability to produce chemical burns, skin rashes, and asthma-like symptoms, ethyleneamines also require substantial care in handling. Higher molecular weight ethyleneamines are often handled at elevated temperatures further increasing the possibility of vapor exposure to these compounds.

Because of the fragility of eye tissue, almost any eye contact with any ethyleneamine may cause irreparable damage, even blindness. A single, short exposure to ethyleneamines, may cause severe skin burns, while a single, prolonged exposure may result in the material being absorbed through the skin in harmful amounts. Exposures have caused allergic skin reactions in some individuals. Single dose oral toxicity of ethyleneamines is low. The oral LD50 for rats is in the range of 1000 to 4500 mg/kg for the ethyleneamines.

In general, the low-molecular weight polyamines have been positive in the Ames assay, increase sister chromatid exchange in Chinese hamster ovary (CHO) cells, and are positive for unscheduled DNA synthesis although they are negative in the mouse micronucleus assay. It is believed that the positive results are based on its ability to chelate copper

For quaternary ammonium compounds (QACs):

Quaternary ammonium compounds (QACs) are cationic surfactants. They are synthetic organically tetra-substituted ammonium compounds, where the R substituents are alkyl or heterocyclic radicals (where hydrogen atoms remain unsubstituted, the term "secondary- or "tertiaryammonium compounds" is preferred).

A common characteristic of these synthetic compounds is that one of the R's is a long-chain hydrophobic aliphatic residue

The cationic surface active compounds are in general more toxic than the anionic and non-ionic surfactants. The positively-charged cationic portion is the functional part of the molecule and the local irritation effects of QACs appear to result from the quaternary ammonium cation. Due to their relative ability to solubilise phospholipids and cholesterol in lipid membranes, QACs affect cell permeability which may lead to cell death. Further QACs denature proteins as cationic materials precipitate protein and are accompanied by generalised tissue irritation. It has been suggested that the experimentally determined decrease in acute toxicity of QACs with chain lengths above C16 is due to decreased water solubility.

In general it appears that QACs with a single long-chain alkyl groups are more toxic and irritating than those with two such substitutions, The straight chain aliphatic QACs have been shown to release histamine from minced guinea pig lung tissue However, studies with benzalkonium chloride have shown that the effect on histamine release depends on the concentration of the solution. When cell suspensions (11% mast cells) from rats were exposed to low concentrations, a decrease in histamine release was seen. When exposed to high concentrations the opposite result was obtained.

In addition, QACs may show curare-like properties (specifically benzalkonium and cetylpyridinium derivatives, a muscular paralysis with no involvement of the central nervous system. This is most often associated with lethal doses Parenteral injections in rats, rabbits and dogs have resulted in prompt but transient limb paralysis and sometimes fatal paresis of the respiratory muscles. This effect seems to be transient. From human testing of different QACs the generalised conclusion is obtained that all the compounds investigated to date exhibit similar toxicological properties.

Acute toxicity: Studies in rats have indicated poor intestinal absorption of QACs. Acute toxicity of QACs varies with the compound and, especially, the route of administration. For some substances the LD50 value is several hundreds times lower by the i.p. or i.v. than the oral route, whereas toxicities between the congeners only differ in the range of two to five times.

At least some QACs are significantly more toxic in 50% dimethyl sulfoxide than in plain water when given orally

Probably all common QAC derivatives produce similar toxic reactions, but as tested in laboratory animals the oral mean lethal dose varies with the compound .

Oral toxicity: LD50 values for QACs have been reported within the range of 250-1000 mg/kg for rats, 150-1000 mg/kg for mice, 150-300 mg/kg for guinea pigs and about 500 mg/kg b.w. for rabbits and dogs. The ranges observed reflect differences in the study designs of these rather old experiments as well as differences between the various QACs.

The oral route of administration was characterised by delayed deaths, gastrointestinal lesions and respiratory and central nervous system depression. It was also found that given into a full stomach, the QACs lead to lower mortality and fewer gastrointestinal symptoms. This support the suggestion of an irritating effect

Dermal toxicity: It has been concluded that the maximum concentration that did not produce irritating effect on intact skin is 0.1%. Irritation became manifest in the 1-10% range. Concentrations below 0.1% have caused irritation in persons with contact dermatitis or broken skin. Although the absorption of QACs through normal skin probably is of less importance than by other routes, studies with excised guinea pig skin have shown that the permeability constants strongly depends on the exposure time and type of skin

Sensitisation: Topical mucosal application of QACs may produce sensitisation. Reports on case stories and patch test have shown that compounds such as benzalkonium chloride, cetalkonium chloride and cetrimide may possibly act as sensitisers. However, in general it is suggested that QACs have a low potential for sensitising man It is difficult to distinguish between an allergic and an irritative skin reaction due to the inherent skin irritating effect of QACs.

Long term/repeated exposure:

Inhalation: A group of 196 farmers (with or without respiratory symptoms) were evaluated for the relationship between exposure to QACs (unspecified, exposure levels not given) and respiratory disorders by testing for lung function and bronchial responsiveness to histamine. After histamine provocation statistically significant associations were found between the prevalence of mild bronchial responsiveness (including asthma-like symptoms) and the use of QACs as disinfectant. The association seems even stronger in people without respiratory symptoms. Genetic toxicity: QACs have been investigated for mutagenicity in microbial test systems. In Ames tests using Salmonella typhimurium with and without metabolic activation no signs of mutagenicity has been observed. Negative results were also obtained in E. coli reversion and B. subtilis rec assays. However, for benzalkonium chloride also positive and equivocal results were seen in the B. subtilis rec assays.

For Fatty Nitrogen Derived (FND) Amides (including several high molecular weight alkyl amino acid amides) The chemicals in the Fatty Nitrogen Derived (FND) Amides of surfactants are similar to the class in general as to physical/chemical properties, environmental fate and toxicity. Human exposure to these chemicals is substantially documented.

The Fatty nitrogen-derived amides (FND amides) comprise four categories:

Subcategory I: Substituted Amides

Subcategory II: Fatty Acid Reaction Products with Amino Compounds (Note: Subcategory II chemicals, in many cases, contain Subcategory I chemicals as major components)

Subcategory III: Imidazole Derivatives

Subcategory IV: FND Amphoterics

Acute Toxicity: The low acute oral toxicity of the FND Amides is well established across all Subcategories by the available data. The limited acute toxicity of these chemicals is also confirmed by four acute dermal and two acute inhalation studies.

Repeated Dose and Reproductive Toxicity: Two subchronic toxicity studies demonstrating low toxicity are available for Subcategory I chemicals. In addition, a 5-day repeated dose study for a third chemical confirmed the minimal toxicity of these chemicals. Since the Subcategory I chemicals are major components of many Subcategory II chemicals, and based on the low repeat-dose toxicity of the amino compounds (e.g. diethanolamine, triethanolamine) used for producing the Subcategory II derivatives, the Subcategory I repeat-dose toxicity studies adequately support Subcategory II.

Two subchronic toxicity studies in Subcategory III confirmed the low order of repeat dose toxicity for the FND Amides Imidazole derivatives. For Subcategory IV, two subchronic toxicity studies for one of the chemicals indicated a low order of repeat-dose toxicity for the FND amphoteric salts similar to that seen in the other categories.

Genetic Toxicity in vitro: Based on the lack of effect of one or more chemicals in each subcategory, adequate data for mutagenic activity as measured by the Salmonella reverse mutation assay exist for all of the subcategories.

Developmental Toxicity: A developmental toxicity study in Subcategory I and in Subcategory IV and a third study for a chemical in Subcategory III are available. The studies indicate these chemicals are not developmental toxicants, as expected based on their structures, molecular weights, physical properties and knowledge of similar chemicals. As above for repeat-dose toxicity, the data for Subcategory I are adequate to support Subcategory II.

Page 17 of 25

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)

	In evaluating potential toxicity of the FND Amides chemicals, it is also useful to review the available data for the related FND Cationic and FND Amines Category chemicals. Acute oral toxicity studies (approximately 80 studies for 40 chemicals in the three categories) provide LD50 values from approximately 400 to 10,000 mg/kg with no apparent organ specific toxicity. Similarly, repeated dose toxicity studies (approximately 35 studies for 15 chemicals) provide NOAELs between 10 and 100 mg/kg/day for rats and slightly lower for dogs. More than 60 genetic toxicity studies (in vitro bacterial and mammalian cells as well as in vivo studies) indicated no mutagenic activity among more than 30 chemicals tested. For reproductive evaluations, 14 studies evaluated reproductive endpoints and/or reproductive organs for 11 chemicals, and 15 studies evaluated developmental toxicity for 13 chemicals indicating no reproductive or developmental effects for the FND group as a whole. Some typical applications of FND Amides are: masonry cement additive; curing agent for epoxy resins; closed hydrocarbon systems in oil field production, refineries and chemical plants; and slip and antiblocking additives for polymers. The safety of the FND Amides to humans is recognised by the U.S. FDA, which has approved stearamide, oleamide and/or erucamide for adhesive; coatings for articles in food contact; coatings for polydelin films; defoaming agents for manufacture of paper and paperboard; animal glue (defoamer in food packaging); in EVA copolymers for food packaging; lubricants for manufacture of paper and paperboard; cellophane in food packaging; closure sealing gasket; and release agents in polymeric resins and petroleum wax. The low order of toxicity indicates that the use of FND Amides does not pose a significant hazard to human health. The differences in chain length, degree of saturation of the carbon chains, source of the natural oils, or addition of an amino group in the chain would not be expected to have an impact on the toxicity pr
8329HTC Super Thermally Conductive Adhesive (Part B) & SILICA AMORPHOUS, FUMED, CRYSTALLINE FREE	substituents and is also supported by the limited toxicity of these long-chain substituted chemicals. For silica amorphous: Derived No Adverse Effects Level (NOAEL) in the range of 1000 mg/kg/d. In humans, synthetic amorphous silica (SAS) is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and dying/cracking of the skin. When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the facese and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals. After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals on humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary track without modification. Both the mammalian and environmental toxicology of SASs are significantly influenced by the piscucation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should note bused for human risk assessment. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eye irritant, and it is not a sensitiser. Repeated-dose and chronic toxicity stud
8329HTC Super Thermally Conductive Adhesive (Part B) & ALUMINIUM NITRIDE	 SAS. Respiratory symptoms in SAS workers have been shown to correlate with smoking but not with SAS exposure, while serial pulmonary function values and chest radiographs are not adversely affected by long-term exposure to SAS. For aluminium compounds: Aluminium present in food and drinking water is poorly absorbed through the gastrointestinal tract. The bioavailability of aluminium is dependent on the form in which it is ingested and the presence of dietary constituents with which the metal cation can complex Ligands in food can have a marked effect on absorption of aluminium, as they can either enhance uptake by forming absorbable (usually water soluble) complexes (e.g., with carboxylic acids such as citric and lactic), or reduce it by forming insoluble compounds (e.g., with phosphate or dissolved silicate). Considering the available human and animal data it is likely that the oral absorption of aluminium can vary 10-fold based on chemical form alone. Although bioavailability appears to generally parallel water solubility, insufficient data are available to directly extrapolate from solubility in water to bioavailability. For oral intake from food, the European Food Safety Authority (EFSA) has derived a tolerable weekly intake (TWI) of 1 milligram (mg) of aluminium per kilogram of bodyweight. In its health assessment, the EFSA states a medium bioavailability of 0.1 % for all aluminium compounds which are ingested with food. This corresponds to a systemically available tolerable daily dose of 0.143 microgrammes (µg) per kilogramme (kg) of body weight. This means that for an adult weighing 60 kg, a systemically available dose of 8.6 µg per day is considered safe. Based on a neuro-developmental toxicity study of aluminium citrate administered via drinking water to rats, the Joint FA/OWHO Expert Committee on Food Additives (JECFA) established a Provisional Tolerable Weekly Intake (PTWI) of 2 mg/kg bw (expressed as aluminium) for all aluminium compound

mg Al/kg bw/day) and dogs (88-93 mg Al/kg bw/day) during subchronic oral exposure. Effects on nerve cells, testes, bone and stomach have been reported at higher doses. Severity of effects increased with dose.

The main toxic effects of aluminium that have been observed in experimental animals are neurotoxicity and nephrotoxicity. Neurotoxicity has also been described in patients dialysed with water containing high concentrations of aluminium, but epidemiological data on possible adverse effects in humans at lower exposures are inconsistent

Reproductive and developmental toxicity:

Studies of reproductive toxicity in male mice (intraperitoneal or subcutaneous administration of aluminium nitrate or chloride) and rabbits (administration of aluminium chloride by gavage) have demonstrated the ability of aluminium to cause testicular toxicity, decreased sperm quality in mice and rabbits and reduced fertility in mice. No reproductive toxicity was seen in females given aluminium nitrate by gavage or dissolved in drinking water. Multi-generation reproductive studies in which aluminium sulfate and aluminium ammonium sulfate were administered to rats in drinking water, showed no evidence of reproductive toxicity.

High doses of aluminium compounds given by gavage have induced signs of embryotoxicity in mice and rats in particular, reduced fetal body weight or pup weight at birth and delayed ossification. Developmental toxicity studies in which aluminium chloride was administered by gavage to pregnant rats showed evidence of foetotoxicity, but it was unclear whether the findings were secondary to maternal toxicity. A twelve-month neuro-development with aluminium citrate administered via the drinking water to Sprague-Dawley rats, was conducted according to Good Laboratory Practice (GLP). Aluminum citrate was selected for the study since it is the most soluble and bioavailable aluminium salt. Pregnant rats were exposed to aluminium citrate from gestational day 6 through lactation, and then the offspring were exposed post-weaning until postnatal day 364. An extensive functional observational battery of tests was performed at various times. Evidence of aluminium toxicity was demonstrated in the high (300 mg/kg bw/day of aluminium) and to a lesser extent, the mid-dose groups (100 mg/kg bw/day of aluminium). In the high-dose group, the main effect was renal damage, resulting in high mortality in the male offspring. No major neurological pathology or neurobehavioural effects were observed, other than in the neuromuscular subdomain (reduced grip strength and increased foot splay). Thus, the lowest observed adverse effect level (LOAEL) was 100 mg/kg bw/day and the no observed adverse effect level (NOAEL) was 30 mg/kg bw/day. Bioavailability of aluminium citrate This study was used by JECFA as key study to derive the PTWI.

Genotoxicity

Aluminium compounds were non-mutagenic in bacterial and mammalian cell systems, but some produced DNA damage and effects on chromosome integrity and segregation in vitro. Clastogenic effects were also observed in vivo when aluminium sulfate was administered at high doses by gavage or by the intraperitoneal route. Several indirect mechanisms have been proposed to explain the variety of genotoxic effects elicited by aluminium sulfate mass administered at high doses by gavage or by the intraperitoneal route. Several indirect mechanisms have been proposed to explain the variety of genotoxic effects elicited by aluminium salts in experimental systems. Cross-linking of DNA with chromosomal proteins, interaction with microtubule assembly and mitotic spindle functioning, induction of oxidative damage, damage of lysosomal membranes with liberation of DNAase, have been suggested to explain the induction of structural chromosomal aberrations, sister chromatid exchanges, chromosome loss and formation of oxidized bases in experimental systems. The EFSA Panel noted that these indirect mechanisms of genotoxicity, occurring at relatively high levels of exposure, are unlikely to be of relevance for humans exposed to aluminium via the diet. Aluminium compounds do not cause gene mutations in either bacteria or mammalian cells. Exposure to aluminium compounds does result in both structural and numerical chromosome aberrations both in in-vitro and in-vivo mutagencity tests. DNA damage is probably the result of indirect mechanisms. The DNA damage was observed only at high exposure levels.

Carcinogenicity.

The available epidemiological studies provide limited evidence that certain exposures in the aluminium production industry are carcinogenic to humans, giving rise to cancer of the lung and bladder. However, the aluminium exposure was confounded by exposure to other agents including polycyclic aromatic hydrocarbons, aromatic amines, nitro compounds and asbestos. There is no evidence of increased cancer risk in non-occupationally exposed persons.

Neurodegenerative diseases.

Following the observation that high levels of aluminium in dialysis fluid could cause a form of dementia in dialysis patients, a number of studies were carried out to determine if aluminium could cause dementia or cognitive impairment as a consequence of environmental exposure over long periods. Aluminium was identified, along with other elements, in the amyloid plaques that are one of the diagnostic lesions in the brain for Alzheimer disease, a common form of senile and pre-senile dementia. some of the epidemiology studies suggest the possibility of an association of Alzheimer disease with aluminium in water, but other studies do not confirm this association. All studies lack information on ingestion of aluminium from food and how concentrations of aluminium in food affect the association between aluminium in water and Alzheimer disease." There are suggestions that persons with some genetic variants may absorb more aluminium than others, but there is a need for more analytical research to determine whether aluminium from various sources has a significant causal association with Alzheimer disease and other neurodegenerative diseases.Aluminium is a neurotoxicant in experimental animals. However, most of the animal studies performed have several limitations and therefore cannot be used for quantitative risk assessment.

Contact sensitivity:

It has been suggested that the body burden of aluminium may be linked to different iseases. Macrophagic myofasciitis and chronic fatigue syndrome can be caused by aluminium-containing adjuvants in vaccines. Macrophagic myofasciitis (MMF) has been described as a disease in adults presenting with ascending myalgia and severe fatigue following exposure to aluminium hydroxide-containing vaccines. The corresponding histological findings include aluminium-containing macrophages infiltrating muscle tissue at the injection site. The hypothesis is that the long-lasting granuloma triggers the development of the systemic syndrome.

Aluminium acts not only as an adjuvant, stimulating the immune system either to fend off infections or to tolerate antigens, it also acts as a sensitisers causing contact allergy and allergic contact dermatitis. In general, metal allergies are very common and aluminium is considered to be a weak allergen. A metal must be ionised to be able to act as a contact allergen, then it has to undergo haptenisation to be immunogenic and to initiate an immune response. Once inside the skin, the metal ions must bin to proteins to become immunologically reactive. The most important routes of exposure and sensitisation to aluminium are through aluminium-containing vaccines. One Swedish study showed a statistically significant association between contact allergy to aluminium and persistent tiching nodules in children treated with allergen-specific immunotherapy (ASIT) Nodules were overrepresented in patients with contact allergy to aluminium

Other routes of sensitisation reported in the literature are the prolonged use of aluminium-containing antiperspirants, topical medication, and tattooing of the skin with aluminium-containing pigments. Most of the patients experienced eczematous reactions whereas tattooing caused granulomas. Even though aluminium is used extensively in industry, only a low number of cases of occupational skin sensitisation to aluminium have been reported Systemic allergic contact dermatitis in the form of flare-up reactions after re-exposure to aluminium has been documented: pruritic nodules at present and previous injection sites, eczema at the site of vaccination as well as at typically atopic localisations after vaccination with aluminium-containing vaccines and/or patch testing with aluminium, and also after use of aluminium-containing toothpaste Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilla. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating

ALUMINIUM NITRIDE & ALUMINIUM

No significant acute toxicological data identified in literature search.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×

Respiratory or Skin sensitisation	✓	STOT - R	epeated Exposure	×
Mutagenicity	×		Aspiration Hazard	×
		Legend:		t available or does not fill the criteria for classification

11.2 Information on other hazards

11.2.1. Endocrine disrupting properties

No evidence of endocrine disrupting properties were found in the current literature.

11.2.2. Other information

See Section 11.1

SECTION 12 Ecological information

8329HTC Super Thermally Conductive Adhesive (Part B)	Endpoint	Test Duration (hr)	Species		Value	Source
	Not Available	Not Available	Not Available		Not Available	Not Available
	Endpoint	Test Duration (hr)	Species		Value	Source
	EC50(ECx)	504h	Crustacea		>=0.62mg/l	2
aluminium nitride	EC50	72h	Algae or other aquatic plants		>=10.02mg/l	2
	LC50	96h	Fish		~0.57mg/l	2
tall oil/ triethylenetetramine polyamides	Endpoint	Test Duration (hr)	Species		Value	Sourc
	NOEC(ECx)	96h	Fish	Fish		2
	LC50	96h	Fish	Fish 7.07m		2
	EC50	48h	Crustacea		7.07mg/l	2
	Endpoint	Test Duration (hr)	Species	Species Value		Sourc
	NOEC(ECx)	48h	Crustacea	>10	Omg/I	1
aluminium	EC50	96h	Algae or other aquatic plants	0.00	54mg/l	2
aiuminium	EC50	72h	Algae or other aquatic plants	0.01	69mg/l	2
	LC50	96h	Fish	0.07	8-0.108mg/l	2
	EC50	48h	Crustacea	0.73	64mg/l	2
silica amorphous, fumed, crystalline free	Endpoint	Test Duration (hr)	Species	Species Value		Source
	Not Available	Not Available	Not Available		Not Available	Not Availabl

Very toxic to aquatic organisms.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Surfactants are in general toxic to aquatic organisms due to their surface-active properties. Historically, synthetic surfactants were often composed of branched alkyl chains resulting in poor biodegradability which led to concerns about their environmental effects. Today however, many of them, for example those used in large amounts, globally, as detergents, are linear and therefore readily biodegradable and considered to be of rather low risk to the environment. A linear structure of the hydrophobic chain facilitates the approach of microorganism while branching, in particular at the terminal position, inhibits biodegradation. Also, the bioaccumulation potential of surfactants is usually low due to the hydrophilic units. Linear surfactants are not always preferred however, as some branching (that ideally does not hinder ready biodegradability) is often preferable from a performance point of view. The reduction in waste water of organic contaminants such as surfactants act either be a consequence of adsorption onto sludge or aerobic biodegradation in the biological step. Similar sorption and degradation processes occur in the environment as a consequence of direct release of surfactants into the environment from product use, or through effluent discharge from sewage treatment plants in surface waters or the application of sewage sludge on land. However, a major part of surfactants in waste water will be efficiently eliminated in the sewage treatment plant. Although toxic to various organisms, surfactants in general only have a limited effect on the bacteria in the biological step. There are occasions however, where adverse effects have been noticed due to e.g. large accidental releases of softeners from laundry companies.

for imidazoline surfactants:

Ecotoxicity

Due to intrinsic properties of amine containing cationic surfactants river water ecotoxicity tests deliver more reproducible test results with limited uncertainty. As river water has a mitigating effect on ecotoxicity due to sorption of the amines to DOC and suspended matter a factor of 10 should be applied to the L(E)C50 to correct for the lower ecotoxicity observed.

for amides, fatty acids C18 unsat, reaction products with tetraethylenepentamine (CAS RN: 1225197-81-8)

Fish LC50 (96 h): 190 ug/l Algae ErC50 (72 h): 612 ug/l; ErC10/ NOEC: 379 ug/l

Daphnia EC50 (48 h): 240, 490 ug/l; (21 d) 75 ug/l

Biodegradability

For amidoamines/imidazolines no ready biodegradability results have been obtained.

This leads to the following environmental classification according for amidoaamines/imidazolines

Acute aquatic hazard H400 : Very toxic to aquatic life

M factor acute 10

Chronic(long-term) aquatic hazard Chronic Category 1 H410: Very toxic to aquatic life with longterm effects M factor chronic 1

For Metal:

Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air.

Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities.

Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic species may bind to dissolved ligands or sorb to solid particles in water.

Ecotoxicity: Even though many metals show few toxic effects at physiological pH levels, transformation may introduce new or magnified effects.

For quaternary ammonium compounds (QACs):

QACs are generally white crystalline powders. Low molecular weight QACs are very soluble in water, but slightly or not at all soluble in solvents such as ether, petrol and benzene. As the molecular weight and chain lengths increases, the solubility in polar solvents (e.g. water) decreases and the solubility in non-polar solvents increases.

Environmental fate

A major part of the QACs is discharged into wastewater and removed in the biological processes of sewage treatment plant. A 90% reduction of the QACs in the water phase of sludge has been reported and alkyl di-/ trimethyl ammonium and alkyl dimethyl benzyl ammonium compounds seem almost completely degraded in sewage sludge. However, the aerobic and anaerobic biodegradability of QACs is not well investigated. Only sparse data are available concerning stability, solubility and biodegradability. In general, it seems that the biodegradability decreases with increasing numbers of alkyl chains: R(CH3)3N+ > R2(CH3)2N+ > R3(CH3)N+ . Within each category the biodegradability seems inversely proportional to the alkyl chain length. Heterocyclic QACs are less degradable than the non-cyclic.

Investigations have shown that bioaccumulation of considerable dimensions will probably not take place.

Ecotoxicity:

Quaternary ammonium compounds and their polymers may be highly toxic to fish and other aquatic organisms. The toxicity of the quaternary ammoniums is known to be greatly reduced in the environment because of preferential binding to dissolved organics in surface water.

For Ammonia:

Atmospheric Fate: Ammonia reacts rapidly with available acids (mainly sulfuric, nitric, and sometimes hydrochloric acid) to form the corresponding salts. Ammonia is persistent in the air.

Aquatic Fate: Biodegrades rapidly to nitrate, producing a high oxygen demand. Non-persistent in water (half-life 2 days).

Ecotoxicity: Moderately toxic to fish under normal temperature and pH conditions and harmful to aquatic life at low concentrations. Does not concentrate in food chain. For aluminium and its compounds and salts:

Despite its prevalence in the environment, no known form of life uses aluminium salts metabolically. In keeping with its pervasiveness, aluminium is well tolerated by plants and animals. Owing to their prevalence, potential beneficial (or otherwise) biological roles of aluminium compounds are of continuing interest.

Environmental fate:

Aluminium occurs in the environment in the form of silicates, oxides and hydroxides, combined with other elements such as sodium, fluorine and arsenic complexes with organic matter.

Acidification of soils releases aluminium as a transportable solution. Mobilisation of aluminium by acid rain results in aluminium becoming available for plant uptake.

As an element, aluminum cannot be degraded in the environment, but may undergo various precipitation or ligand exchange reactions. Aluminum in compounds has only one oxidation state (+3), and would not undergo oxidation-reduction reactions under environmental conditions. Aluminum can be complexed by various ligands present in the environment (e.g., fulvic and humic acids). The solubility of aluminum in the environment will depend on the ligands present and the pH.

The trivalent aluminum ion is surrounded by six water molecules in solution. The hydrated aluminum ion, [Al(H2O)6]3+, undergoes hydrolysis, in which a stepwise deprotonation of the coordinated water ligands forms bound hydroxide ligands (e.g., [Al(H2O)5(OH)]2+, [Al(H2O)4(OH)2]+). The speciation of aluminum in water is pH dependent. The hydrated trivalent aluminum ion is the predominant form at pH levels below 4. Between pH 5 and 6, the predominant hydrolysis products are Al(OH)2+ and Al(OH)2+, while the solid Al(OH)3 is most prevalent between pH 5.2 and 8.8. The soluble species Al(OH)4- is the predominant species above pH 9, and is the only species present above pH 10. Polymeric aluminum

hydroxides appear between pH 4.7 and 10.5, and increase in size until they are transformed into colloidal particles of amorphous AI(OH)3, which crystallise to gibbsite in acid waters. Polymerisation is affected by the presence of dissolved silica; when enough silica is present, aluminum is precipitated as poorly crystallised clay mineral species. Hydroxyaluminum compounds are considered amphoteric (e.g., they can act as both acids and bases in solution). Because of this property, aluminum hydroxides can act as buffers and resist pH changes within the narrow pH range of 4-5.

Monomeric aluminum compounds, typified by aluminum fluoride, chloride, and sulfate, are considered reactive or labile compounds, whereas polymeric aluminum species react much more slowly in the environment. Aluminum has a stronger attraction for fluoride in an acidic environment compared to other inorganic ligand.

The adsorption of aluminum onto clay surfaces can be a significant factor in controlling aluminum mobility in the environment, and these adsorption reactions, measured in one study at pH 3.0-4.1, have been observed to be very rapid. However, clays may act either as a sink or a source for soluble aluminum depending on the degree of aluminum saturation on the clay surface.

Within the pH range of 5-6, aluminum complexes with phosphate and is removed from solution. Because phosphate is a necessary nutrient in ecological systems, this immobilization of both aluminum and phosphate may result in depleted nutrient states in surface water.

Plant species and cultivars of the same species differ considerably in their ability to take up and translocate aluminum to above-ground parts. Tea leaves may contain very high concentrations of aluminum, >5,000 mg/kg in old leaves. Other plants that may contain high levels of aluminum include Lycopodium (Lycopodiaceae), a few ferns, Symplocos (Symplocaceae), and Orites (Proteaceae). Aluminum is often taken up and concentrated in root tissue. In sub-alpine ecosystems, the large root biomass of the Douglas fir, *Abies amabilis*, takes up aluminum and immobilizes it, preventing large accumulation in above-ground tissue. It is unclear to what extent aluminum is taken up into root food crops and leafy vegetables. An uptake factor (concentration of aluminum in the plant/concentration of aluminum in soil) of 0.004 for leafy vegetables and 0.00065 for fruits and tubers has been reported, but the pH and plant species from which these uptake factors were derived are unclear. Based upon these values, however, it is clear that aluminum is not taken up in plants from soil, but is instead biodiluted.

Aluminum concentrations in rainbow trout from an alum-treated lake, an untreated lake, and a hatchery were highest in gill tissue and lowest in muscle. Aluminum residue analyses in brook trout have shown that whole-body aluminum content decreases as the fish advance from larvae to juveniles. These results imply that the aging larvae begin to decrease their rate of aluminum uptake, to eliminate aluminum at a rate that exceeds uptake, or to maintain approximately the same amount of aluminum while the body mass increases. The decline in whole-body aluminum residues in juvenile brook trout may be related to growth and dilution by edible muscle tissue that accumulated less aluminum transport from solution to the gill-associated aluminum was not sorbed to the gill tissue, but to the gill mucus. It is thought that mucus appears to retard aluminum transport from solution to the membrane surface, thus delaying the acute biological response of the fish. It has been reported that concentrations of aluminum in whole-body tissue of the Atlantic salmon exposed to high concentrations of aluminum ranging from 3 ug/g (for fish exposed to 33 ug/L) to 96 ug/g (for fish exposed to 264 ug/L) at pH 5.5. After 60 days of exposure, BCFs ranged from 76 to 190 and were directly related to the aluminum exposure concentration. In acidic waters (pH 4.6-5.3) with low concentrations of calcium (0.5-1.5 mg Ca/L), labile aluminum between 25 and 75 ug/L is toxic. Because aluminum is toxic to many aquatic species, it is not bioaccumulated to a significant source of aluminum exposure in humans.

Bioconcentration of aluminum has also been reported for several aquatic invertebrate species. BCF values ranging from 0.13 to 0.5 in the whole-body were reported for the snail. Bioconcentration of aluminum has also been reported for aquatic insects.

Ecotoxicity:

Freshwater species pH >6.5

Fish: Acute LC50 (48-96 h) 5 spp: 0.6 (Salmo salar) - 106 mg/L; Chronic NOEC (8-28 d): 7 spp,NOEC, 0.034-7.1 mg/L. The lowest measured chronic figure was an 8-d LC50 of 0.17 mg/L for *Micropterus* sp.

Amphibian: Acute LC50 (4 d): Bufo americanus, 0.86-1.66 mg/L; Chronic LC50 (8-d) 2.28 mg/L

Crustaceans LC50 (48 h): 1 sp 2.3-36 9 mg/L; Chronic NOEC (7-28 d) 3 spp, 0.136-1.72 mg/L

Algae EC50 (96 h): population growth, 0.46-0.57 mg/L; 2 spp, chronic NOEC, 0.8-2.0 mg/L

Freshwater species pH <6.5 (all between pH 4.5 and 6.0)

Fish LC50 (24-96 h): 4 spp, 0.015 (S. trutta) - 4.2 mg/L; chronic data on Salmo trutta, LC50 (21-42 d) 0.015- 0.105 mg/L

Amphibians LC50 (4-5 d): 2 spp, 0.540-2.670 m/L (absolute range 0.40-5.2 mg/L)

Alga: 1 sp NOEC growth 2.0 mg/L

Among freshwater aquatic plants, single-celled plants are generally the most sensitive to aluminium. Fish are generally more sensitive to aluminium than aquatic invertebrates. Aluminium is a gill toxicant to fish, causing both ionoregulatory and respiratory effects.

The bioavailability and toxicity of aluminium is generally greatest in acid solutions. Aluminium in acid habitats has been observed to be toxic to fish and phytoplankton. Aluminium is generally more toxic over the pH range 4.4.5.4, with a maximum toxicity occurring around pH 5.0.5.2. The inorganic single unit aluminium species (Al(OH)2 +) is thought to be the most toxic. Under very acid conditions, the toxic effects of the high H+ concentration appear to be more important than the effects of low concentrations of aluminium; at approximately neutral pH values, the toxicity of aluminium is greatly reduced. The solubility of aluminium is also enhanced under alkaline conditions, due to its amphoteric character, and some researchers found that the acute toxicity of aluminium increased from pH 7 to pH 9. However, the opposite relationship was found in other studies. The uptake and toxicity of

aluminium in freshwater organisms generally decreases with increasing water hardness under acidic, neutral and alkaline conditions. Complexing agents such as fluoride, citrate and humic substances reduce the availability of aluminium to organisms, resulting in lower toxicity. Silicon can also reduce aluminium toxicity to fish.

Drinking Water Standards: aluminium: 200 ug/l (UK max.) 200 ug/l (WHO guideline) chloride: 400 mg/l (UK max.) 250 mg/l (WHO guideline) fluoride: 1.5 mg/l (UK max.) 1.5 mg/l (WHO guideline) nitrate: 50 mg/l (UK max.) 50 mg/l (WHO guideline) sulfate: 250 mg/l (UK max.) Soil Guideline: none available.

Air Quality Standards: none available.

For Amorphous Silica: Amorphous silica is chemically and biologically inert. It is not biodegradable.

Aquatic Fate: Due to its insolubility in water there is a separation at every filtration and sedimentation process. On a global scale, the level of man-made synthetic amorphous silicas (SAS) represents up to 2.4% of the dissolved silica naturally present in the aquatic environment and untreated SAS have a relatively low water solubility and an extremely low vapour pressure. Biodegradability in sewage treatment plants or in surface water is not applicable to inorganic substances like SAS.

Terrestrial Fate: Crystalline and/or amorphous silicas are common on the earth in soils and sediments, and in living organisms (e.g. diatoms), but only the dissolved form is bioavailable. On the basis of these properties it is expected that SAS released into the environment will be distributed mainly into soil/sediment. Surface treated silica will be wetted then adsorbed onto soils and sediments.

Atmospheric Fate: SAS is not expected to be distributed into the air if released.

Ecotoxicity: SAS is not toxic to environmental organisms (apart from physical desiccation in insects). SAS presents a low risk for adverse effects to the environment. For Silica:

Environmental Fate: Most documentation on the fate of silica in the environment concerns dissolved silica, in the aquatic environment, regardless of origin, (man-made or natural), or structure, (crystalline or amorphous).

Terrestrial Fate: Silicon makes up 25.7% of the Earth's crust, by weight, and is the second most abundant element, being exceeded only by oxygen. Silicon is not found free in nature, but occurs chiefly as the oxide and as silicates. Once released into the environment, no distinction can be made between the initial forms of silica.

Aquatic Fate: At normal environmental pH, dissolved silica exists exclusively as monosilicic acid. At pH 9.4, amorphous silica is highly soluble in water. Crystalline silica, in the form of quartz, has low solubility in water. Silicic acid plays an important role in the biological/geological/chemical cycle of silicon, especially in the ocean. Marine organisms such as diatoms, silicoflagellates and radiolarians use silicic acid in their skeletal structures and their skeletal remains leave silica in sea sediment

Ecotoxicity: Silicon is important to plant and animal life and is practically non-toxic to fish including zebrafish, and Daphnia magna water fleas.

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air	
	No Data available for all ingredients	No Data available for all ingredients	

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

12.4. Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

12.5. Results of PBT and vPvB assessment

	Р	В	т
Relevant available data	Not Available	Not Available	Not Available
PBT	×	×	×
vPvB	×	×	×
PBT Criteria fulfilled?			No
vPvB			No

12.6. Endocrine disrupting properties

No evidence of endocrine disrupting properties were found in the current literature.

12.7. Other adverse effects

No evidence of ozone depleting properties were found in the current literature.

SECTION 13 Disposal considerations

Product / Packaging disposal	 Containers may still present a chemical hazard/ danger when empty. Return to supplier for reuse/ recycling if possible. Otherwise: If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. Where possible retain label warnings and SDS and observe all notices pertaining to the product. For small quantities: Cautiously add the material to dry butanol in an appropriate solvent. Reaction may be vigorous and exothermic. Large volumes of flammable hydrogen may be generated and venting procedures should be conducted in a flame-proof environment. Neutralise the solution with aqueous acid, filter and burn the liquid portion in an approved incinerator.
------------------------------	--

Page 22 of 25

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)

	 DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority.
Waste treatment options	Not Available
Sewage disposal options	Not Available

SECTION 14 Transport information

Labels Required

Labele Required	
	For 8329HTC-50ML, 8329HTC-400ML
	NOT REGULATED by Ground ADR Special Provision 375
	NOT REGULATED by Air IATA Special Provision A197
	NOT REGULATED by Sea IMDG per 2.10.2.7
	NOT REGULATED by ADN Special Provision 274 (The provision of 3.1.2.8 apply)

Land transport (ADR-RID)

14.1. UN number or ID number	3077			
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains aluminium nitride)			
14.3. Transport hazard	Class 9			
class(es)	Subsidiary risk Not Applicat	ble		
14.4. Packing group	Ш	III		
14.5. Environmental hazard	Environmentally hazardous	Environmentally hazardous		
	Hazard identification (Kemler)	90		
14.6. Special precautions for user	Classification code	M7		
	Hazard Label	9		
	Special provisions	274 335 375 601		
	Limited quantity	5 kg		
	Tunnel Restriction Code	3 (-)		

Air transport (ICAO-IATA / DGR)

	,		
14.1. UN number	3077		
14.2. UN proper shipping name	Waste Environmentally hazardous substance, solid, n.o.s. (contains aluminium nitride)		
	ICAO/IATA Class	9	
14.3. Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable	
class(es)	ERG Code	9L	
14.4. Packing group			
14.5. Environmental hazard	Environmentally hazardous		
	Special provisions		A97 A158 A179 A197 A215
	Cargo Only Packing In	structions	956
	Cargo Only Maximum Qty / Pack		400 kg
4.6. Special precautions for user	Passenger and Cargo	Packing Instructions	956
usei	Passenger and Cargo Maximum Qty / Pack		400 kg
	Passenger and Cargo	Limited Quantity Packing Instructions	Y956
	Passenger and Cargo	Limited Maximum Qty / Pack	30 kg G

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	3077		
14.2. UN proper shipping name	Waste ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains aluminium nitride)		
14.3. Transport hazard class(es)	IMDG Class	9	
	IMDG Subrisk	Not Applicable	

Page 23 of 25

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)

14.4. Packing group	ш		
14.5. Environmental hazard	Marine Pollutant		
14.6. Special precautions for user	EMS Number	F-A, S-F	
	Special provisions	274 335 966 967 969	
	Limited Quantities	5 kg	

Inland waterways transport (ADN)

14.1. UN number	3077		
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains aluminium nitride)		
14.3. Transport hazard class(es)	9 Not Applicable		
14.4. Packing group	II		
14.5. Environmental hazard	Environmentally hazardous		
14.6. Special precautions for user		M7 274; 335; 375; 601	
	· · ·	5 kg	
	Equipment required	PP, A***	
	Fire cones number	0	

14.7. Maritime transport in bulk according to IMO instruments

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
aluminium nitride	Not Available
tall oil/ triethylenetetramine polyamides	Not Available
aluminium	Not Available
silica amorphous, fumed, crystalline free	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
aluminium nitride	Not Available
tall oil/ triethylenetetramine polyamides	Not Available
aluminium	Not Available
silica amorphous, fumed, crystalline free	Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

aluminium nitride is found on the following regulatory lists	
Not Applicable	
tall oil/ triethylenetetramine polyamides is found on the following regulatory lists	
Not Applicable	
aluminium is found on the following regulatory lists	
Great Britain GB mandatory classification and labelling list (GB MCL)	UK Workplace Exposure Limits (WELs).
International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)	
silica amorphous, fumed, crystalline free is found on the following regulatory lists	
Great Britain GB Biocidal Active Substances	UK Workplace Exposure Limits (WELs).
International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)	

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

Information according to 2012/18/EU (Seveso III):

Seveso Category E1

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (aluminium nitride; tall oil/ triethylenetetramine polyamides; aluminium; silica amorphous, fumed, crystalline free)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (silica amorphous, fumed, crystalline free)
Japan - ENCS	No (tall oil/ triethylenetetramine polyamides; aluminium)
Korea - KECI	Yes
New Zealand - NZIoC	No (aluminium nitride)
Philippines - PICCS	Yes
USA - TSCA	No (silica amorphous, fumed, crystalline free)
Taiwan - TCSI	Yes
Mexico - INSQ	No (aluminium nitride)
Vietnam - NCI	Yes
Russia - FBEPH	No (tall oil/ triethylenetetramine polyamides)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	24/04/2023
Initial Date	24/04/2023

Full text Risk and Hazard codes

H228	Flammable solid.
H250	Catches fire spontaneously if exposed to air.
H261	In contact with water releases flammable gases.
H302+H332	Harmful if swallowed or if inhaled.
H314	Causes severe skin burns and eye damage.
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H411	Toxic to aquatic life with long lasting effects.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

- EN 166 Personal eye-protection
- EN 340 Protective clothing
- EN 374 Protective gloves against chemicals and micro-organisms
- EN 13832 Footwear protecting against chemicals
- EN 133 Respiratory protective devices

Definitions and abbreviations

- PC-TWA: Permissible Concentration-Time Weighted Average
- PC-STEL: Permissible Concentration-Short Term Exposure Limit
- IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- STEL: Short Term Exposure Limit
- TEEL: Temporary Emergency Exposure Limit.
- IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard
- OSF: Odour Safety Factor
- NOAEL :No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value BCF: BioConcentration Factors
- BEI: Biological Exposure Index
- AIIC: Australian Inventory of Industrial Chemicals
- DSL: Domestic Substances List
- NDSL: Non-Domestic Substances List
- IECSC: Inventory of Existing Chemical Substance in China
- EINECS: European INventory of Existing Commercial chemical Substances
- ELINCS: European List of Notified Chemical Substances

Page 25 of 25

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part B)

NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIOC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Classification and procedure used to derive the classification for mixtures according to Regulation (EC) 1272/2008 [CLP]

Classification according to regulation (EC) No 1272/2008 [CLP] and amendments	Classification Procedure
Serious Eye Damage/Eye Irritation Category 1, H318	Calculation method
Skin Corrosion/Irritation Category 2, H315	Expert judgement
Sensitisation (Skin) Category 1, H317	Calculation method
Hazardous to the Aquatic Environment Long-Term Hazard Category 1, H410	Expert judgement
, EUH210	Expert judgement